
 

Copyright © 2012 WhitePubs Enterprises, Inc.  

 

 

 

 

 

Chapter 8 

8 Minimization Techniques 

8.1 Introduction 

The emphasis is on clean, irredundant, minimal designs has been dramatically affected by the evolution of LSI [VLSI] 
technology. There are instances where a minimal implementation costs more in board space [or die size] or design 
time without providing testing, cost, or execution speed advantages. An understanding of minimization techniques is 
still a requirement for the LSI [VLSI] designer, however, as much of the logical thought discipline is necessary for 
current micro-system designs.  

For the chip designer, circuit cost can be shown to be linearly related to chip area, which in turn is a function (all other 
variables remaining fixed) of the number of gates and the number of connections. The emphasis of minimization 
would be gate count reduction for TTL, and ECL (bipolar LSI) since their gates occupy a larger chip area then 
connections; for MOS LSI, the emphasis of the minimization would be connection length or connection count (the 
connection length is related to the number of gates and to the number of connections). 

Although highly simplified, expressing circuit cost as a function of the number of gates and the number of connections 
gives a reasonable approximation.1 

For the circuit board designer, cost can be shown to be related to the number of packages and the number of 
connections. For high-speed designs, the emphasis of minimization would be connection length, which is a function 
of the number of gates and the number of connections. For densely packed boards, ,the emphasis of the 
minimization would be package count. It should also be noted that, for a fixed board size, as the cost of the IC 
packages drops, the cost of the connections becomes dominant and the emphasis of the minimization shifts 
accordingly.2 

For testing purposes, redundant circuit are not as testable as their irredundant equivalents, since redundancy masks 
faults (see Chapter 12). 

From the preceding, it is evident that judicious minimization remains an important part of any cost-effective design 
and implementation.  

This and the following chapters will present some of the new techniques in minimization such as Svoboda’s weight 
algorithm and the fundamental product concept, and some of the logical-instrument teaching aides that have been 
used to demonstrate the theorems behind these techniques. 

8.2 Single-Output Minimization 

For simplification, the minimization techniques will be presented using a single-output combinational circuit as shown 
in FIG 8-1. (A brief look at multiple-output minimization is included in Section 8.6). 

8.2.1 Design Constraints 
The selection of a minimization technique is a function of the overall objectives. Any design must be implemented 
under certain constraints similar to those called out in Table 8-1. A design is also broken up into units that are of a 
reasonable size for human comprehension and/or for the purpose of honoring the limits of design support systems 

                                                           

1 Holds true for today’s ASIC designs. 
2 This pattern continues to evolve. Die size and power are driving forces today. 
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will restrict the actual “cleanness” of the final design. By breaking a circuit up into modules, some opportunities for 
minimization will become forbidden. The further partitioning into sub-modules will also affect the minimization. The 
tradeoff is the design time. Each additional variable increases the problem complexity by a factor of two in the binary 
space. Therefore, it is more efficient if, after the initial module design is completed, it is reviewed for further 
reductions. 

Sub-module size is a function of the techniques available for the design, If an APL program such as the package in 
the first seven chapters of this book is used, the restriction is thirteen to fifteen variables (limited by the workspace 
size).3 The parallel Boolean processor, if built as discussed in a later chapter, could handle up to 22-variable 
modules. 

The design constraints such as device tipe,, board space, etc., will determine the desired result of the minimization to 
be used. For example, NOR-NOR gate staging implements the minimal ∑∏ form, while NAND-NAND gate staging 
implements the minimal ∏∑ form. If multiplexors may be used, Marquand mapping and column-only minimization 
should be performed. 

For any of these approaches, the underlying minimization techniques are the same. 

8.2.2 Minimization by Inspection 
There are many instances where the algebraic expression or the logical map (Venn, Veitch, Karnough, Marquand, 
Triadic) is simple enough for obvious reductions to be made without any particular technique being formally applied. 
This is the case for the simple expressions of six or fewer variables such as: 

 Y = A + AC + AB 

which may be immediately rewritten as 

 Y = A 

By recognizing that  

 A (1 + C) = A (1) = A 

Table 8-1  Design Constraints 

Design Constraint Comment 

Cost Affects everything 

Fan-In, Fan-Out Function of logic family to be used 

Logic Type Any constraint on NAND, NOR, etc., availability [base die process 
and wafer-fab line scheduling] 

Timing Consideration High-speed logic requirement 

Board Size Available “real-estate” (restricts package/gate count) 

Reliability Requirements Constrains redundancy allowed 

Time How much effort can be expended 

Support Computer assist; Manual Reductions; 

Power Requirements Further constraints on the implementation 

Number of Variables Pin-out limitations (primary variables); internal or secondary 
variables are a functions of the number of connections) 

                                                           
3 Computer capacity at the time bears no resemblance to what we have today. 
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Design Constraint Comment 

Partitioning Breaking a module up into manageable pieces 

Module Definition Module boundaries should be maintained 

Classification of Design Spacecraft (most minimal, most reliable); military (rugged); 
commercial  

Design Constraints (Con’t) 

 

 

Figure 8-1  Combinational, Single-Output Circuit 
 

An equivalent example for a map wpld be the appearance of an obvious structure as shown in Figure 8-2 for 
Karnough and Marquand maps of  

  Y = X3X1 + X3X2 + X2X1 

8.2.3 Minimization and Mapping by Observation 
For a small number of variables, a function to be minimized may be mapped by expanding the expression into a sum 
of products form and marking a “one” on the map at all points corresponding to a minterm of the function. Points 
which are logical distance one apart are connected. (On a Karnough 4-variable map, these would be adjacent points.) 
The resulting structures represent reduced terms. The terms of the largest structures form the prime implicants of the 
function. 

This is a casual approach and as the number f variables and/or the number of minterms of the function increases, the 
reliability of this method decreases. 

 

Figure 8-2  Reducing a Simple Function 
 

8.2.4 Minimization by Algebraic Manipulation 
Algebraic manipulation of an expression for a function to change it into a reduced minimal form is tedious and prone 
to human error. The same disadvantages may be cited for tabular reduction techniques. 

Figure 8-3 demonstrates an algebraic reduction and presents a Marquand map of the sample function. 
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Figure 8-3  Algebraic and Map Minimization of a 5-VariableFunction 
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8.3 Svoboda's Weight Algorithm 

A convenient algorithm for manual or programmed minimization of a function is the Weight Algorithm developed by 
Svoboda. It is readily applied to manual solutions of up to eight (8) variables, depending upon the complexity of the 
function. To perform the weight algorithm manually, proceed as follows: 

1. Map all terms where the function Y is true as "1" points on a Marquand Map.  (A Karnough map may be 
used but it is inconvenient.) Include all "Don't Care" terms as "#" points. Unmarked points are those for 
which the function Y = 0. 

2. Connect all pairs of points of logical distance one, where pi = 1 or pi = #, where pi is the label of point i. All 
such connections are referred to as "edges".  

3. Using a second map (for clarity), fill in the squares corresponding to the minterms of the function Y (all pi = 1) 
with the number of edges connected to that minterm. Include in the count edges between minterms where 
both pi = 1, and between minterms where one pi = #. 

4. Scanning the points sequentially from the origin (P0), find the minterm with the lowest edge count or weight. 
The first search should be for points with weight w = 0.) This is a critical point of the function Y. 

In his paper, "Ordering of Implicants", Svoboda discusses the natural phenomena that, when coverage is 
made from the origin forward in sequence, the probability of the minimal function expression being obtained 
is increased. The ordering concept is the basis of the weight algorithm, fundamental product coverage, and 
the multiple-output minimization. 

5. Select the term representing the largest structure (edge, face, and cube) which covers that minterm. [Not 
limited to 3 dimensions.] This is a prime implicant of the function. 

6. Record the prime implicant and mark all minterms of the prime implicant as covered by labeling the points 
as Don't Cares. 

7. Continue scanning from the last critical point to find the next uncovered minterm with the lowest weight. If 
there are none with the last selected weight value, increment the weight value by one and return to the origin 
to begin scanning again. 

8. Repeat steps 5 through 7 until all minterms of the function are covered. The selected minterms form the 
critical set of minterms of the function. 

The problem with the algorithm is that, where a choice of structures exists, the algorithm fails. In some cases a 
solution may be obtained by choosing the structure which covers the most 1s or uncovered minterms. Where there 
are equal choices, there is more than one solution and the algorithm fails to provide a choice of one best solution. In 
many cases, there is little practical advantage in pursuing more than one of the minimal solutions. 

The algorithm is presented here without proof. Theorems for this and other procedures are presented in Chapter 9. 

Figure 8-6 presents a step-by-step solution of a 5-variable function using Marquand Maps. Figure 8-5 presents an 
interesting 6-variable, incompletely specified function. The latter example appears throughout the text. 
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Figure 8-4  The Weight Algorithm for a Five-Variable Function 
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Figure 8-5  The Weight Algorithm for a Six-Variable Function 
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8.4 Logical Instruments: The Weight Deck (Original 80-Hole Punched Card Deck)  

8.4.1 Description of the Cards 
As a teaching aide4 for the weight algorithms, Svoboda developed a deck referred to as the weight deck, a set of 80-
column punched cards where each card represents a point in the 6-variable binary space. 

Each card is indexed in the upper left-hand corner by the row-column short-hand index in the form xn (letter-
digit).Each card is also indexed in the upper right corner by the decimal point identifier. 

The card is punched with a group of six vertically grouped punches for each point in the binary space.  Holding the 
card so that the eighty columns run vertically, from top to bottom and so that the punch rows zero through seven run 
from let to right, the groups are seen to be arranged in rows and columns corresponding to the Marquand Map. (See 
Figure 8-6.) 

 

Figure 8-6  Weight Deck Card A0 

 

 

 
                                                           
4 1960s, 1970s 
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A sextet is non-punched at the point corresponding to the point the card represents. One punch is a sextet is non-
punched if the point in that sextet represents is at logical distance one from the point represented by the card. The 
particular punch position corresponds to the variable which changes (the variable missing from the term representing 
the edge formed by the two points).  

8.4.2  Finding the Weights for the Six-Variable Example 
Referring to Figure 8-5a, to obtain the weights or edge counts for the minterms of the function, from the set of 64 
cards representing th binary space, remove those cards which represent the zeros of the function. 

The set of cards representing the zeros, when aligned and held to a light (hold up in front of a lightbulb), will show 
one punched position in each group or punch positions for each edge which may be formed between "1" and "Don't 
Care" points of the function. 

By reading a count of the punch positions punched in each sextet, the weight of the point that sextet represents is 
obtained. 

In addition, the punch position contains the information describing which edge of the six possible for any point exists. 
The lowest punch position of the sextet corresponds to x0 and the highest to x5. 

For our example, use the cards representing the points: A0, B1, B5, B7, C0, C5, D5, D6, D7, E0, E7, F0, F2, F4, F7, 
G0, and G2. These cards will produce the weights for the "1" and for the "Don’t' Care" points. The maps shown earlier 
did not record the weights for the "Don't Care" points. (See Figure 8-5b.) 

8.5 Svoboda's Fundamental Product Procedure 

8.5.1 Introduction 
For more difficult problems, the structures or terms which cover a given minterm may not be "visible", or more than 
one structure of seemingly identical properties may cover the minterm. In these cases, the choice of the proper term 
for the best coverage becomes non-trivial. The fundamental product and the theorems of mutual term exclusivity 
were developed for these situations. 

The fundamental product of a minterm is defined as the product of those literals that occur in every edge that can 
be connected to the minterm or point under examination. In other words, it is the product of those literals that are 
present in every term that covers the minterm. 

An effective literal is a literal that, when added to the literals of a fundamental product, forms a product that causes 
ones to be included in the term and no zeros to be included. 

Any minterm, which is also covered by all of the prime implicants, which are found for the minterm under examination, 
is called mutually term exclusive. 

8.5.2  The Procedure for Finding the Fundamental Product and the Effective Mask 
To manually perform minimization via the fundamental product modification to the weight algorithm, proceed as 
follows (note that this is a programmable procedure): 

1. Perform the first steps of the weight algorithm to find the weights of all minterms of the function to be 
reduced. 

2. Begin at the origin and scan in decimal index order to find the first critical point (as per the weight algorithm). 

3. Find the fundamental product for that minterm by listing all of the edges that can be formed from that 
minterm to points that are minterms or points that are Don't Cares. The fundamental product will be those 
literals which appear in each and every edge. 

4. Examine (using a scratch map) only those points represented by the fundamental product. Are there any 
literals that may be added to the fundamental product to form an effective mask such that all ones visible on 
the scratch map are covered, but no zeros are covered? These literals form the effective mask. 

If there is a failure to find an effective mask, mark this point as “failed” and proceed to the next critical point 
and repeat the process. 

If there is success, the term so formed belongs to the minimal form. Mark all minterms that have been 
covered by this term as “Don’t Cares” and proceed to the next critical point. 

5. Periodically retry “failed” points. 
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6. Repeat steps 3 through 5 until all minterm points are covered. 

Part of the solution of the six-variable problem using the fundamental product approach is shown in Figure 8-7. The 
partial solution should be compared to that of Figure 8-5. Note: it is still possible to have multiple solutions. 

 

 
Figure 8-7  Start  
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Figure 8-8  Continued 
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